بئر خحا

 در ابثّدا سعى نداينّ نكات ثهم در مسانل حل شده را با دنت مورد توجي فرار داده ودر هر بخش به طور بجأگانه نسبـت به حل تمرينات خواسته شلده اقدام نمايند. شوارد مورد بررسى به شرح زبر ميباشنا

1
演
 \& - اصحاسبه انتُكرال دو كانه با استفاده از تغير ثتغبر - 0 - 1 -V V V V V - 1

$$
R:\left\{\begin{array}{l}
x \geqslant r \\
x^{\prime}+y^{\prime} \leqslant r a
\end{array}\right.
$$

(1)

$x=\sqrt{1 d-y^{\prime}}=2$

$$
x=r
$$

$$
\left\{\begin{array}{l}
x^{r}+y^{r}=r d \\
x=r \rightarrow q+y^{r}=r d \rightarrow y= \pm r
\end{array}\right.
$$

$$
r \leqslant x \leqslant \sqrt{r d-y^{r}} \quad, \quad-r \leqslant y \leqslant r
$$

$$
\begin{gathered}
y=e^{x} \rightarrow x=e^{r} \quad x=\ln y \quad x=r \quad-\quad, r \\
x=r \\
\ln y \leq x \leq r \\
1 \leq y \leq e^{r}
\end{gathered}
$$

$$
\begin{aligned}
& \text { succix=r, } y=1 \quad y=e^{x} \quad \text { Slogn } \quad r=1 R
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
y=e^{x} \\
y=10 v^{\prime}
\end{array} \rightarrow \begin{array}{l}
1 \leqslant y \leqslant e^{x} \\
\end{array} \\
& \begin{array}{ll}
y=e^{x} \\
y=10 y_{0}
\end{array} \rightarrow \begin{array}{l}
1 \leq y \leq e^{x} \\
0 \leq x \leq 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& y=\sqrt{1 d-x^{r}} \quad \text { yen } \\
& y=-\sqrt{1 d-x^{r}} \quad \dot{v}_{i}^{\prime} \text {. } \\
& -\sqrt{r d-x^{r}} \leqslant y \leqslant \sqrt{r d-x^{r}} \quad, \quad r \leqslant x \leqslant \omega
\end{aligned}
$$

$$
\text { Nil } y^{\prime \prime}=x^{r}, y=x \text { Glog }
$$

$$
y=\sqrt{x^{r}} \quad \cos ^{\prime \prime}=\sqrt{x^{x}} \leqslant y \leqslant x
$$

$$
x=\sqrt{x^{4}} \rightarrow x=0,1 \quad 0 \leqslant x \leqslant 1
$$

$x=\frac{r}{y^{r}}$ i/vir (1) (a), 1; $=16$,

$$
x=y \quad \rightarrow \quad \quad y \leqslant x \leqslant \sqrt[y]{y^{r}}
$$

$$
0 \leqslant y \leqslant 1
$$

$$
\text { rido } R_{r}, R_{1}=\sigma i, \sim 1,=\alpha i \text { (} 6,1,-10, \text { : (C) }
$$

$$
R_{1}:\left\{\begin{array}{lll}
y=x & y_{0} & \leq \leq y \leq x \\
y=0 & d_{0}^{n} \sigma^{n} & \leq x \leq F
\end{array}\right.
$$

$$
R_{r}:\left\{\begin{array}{lll}
x=\frac{14}{y} & -1, v^{2} & y \leqslant x \leqslant \frac{14}{y} \\
x=y & \therefore \quad, & r \leqslant y \leqslant r
\end{array}\right.
$$

$R_{f}: \begin{cases}x=\Lambda \quad-1, \sigma & y \leqslant x \leqslant \Lambda \\ x=y & \quad,\end{cases}$
@material_world

$$
R=R_{r} U R_{r}
$$

$$
\begin{aligned}
& \begin{cases}x=A & y=x \\
y=\frac{14}{x} \rightarrow y=r, & d=x \\
y=\frac{14}{x} & y=x, y=r\end{cases} \\
& R_{r}:\left\{\begin{array}{lll}
y=\frac{14}{x} & y & y=\frac{14}{x} \\
y=\cdot \sigma_{0} \rightarrow 4 \leq \frac{19}{x}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& y=1 \quad \text { Vicin } \\
& y=\sqrt{x} \text { Stu, } \\
& \sqrt{x} \leq y \leq 1 \quad 0 \leqslant x \leq 1 \\
& x=y^{r} \text { 少淂 } \quad \leqslant x \leqslant y^{r} \\
& x=0 \quad, \leqslant y \leqslant 1
\end{aligned}
$$

$$
\begin{aligned}
& y=4 x-x^{r}
\end{aligned}
$$

$$
\begin{aligned}
& y=x \\
& \text { 1) CN } \\
& x=4 x-x^{r} \\
& \text { (2)", } \\
& x-2 x=0 \\
& x \leq y \leq 4 x-x^{r} \\
& x=0, d \\
& \text { - } \leqslant x \leqslant d \\
& y=0, d
\end{aligned}
$$

$$
\begin{aligned}
& x^{r}-4 x-y=0 \quad x=\frac{\mu t}{10} \sqrt{9+y}
\end{aligned}
$$

综 $=?$

$$
R_{1}:\left\{\begin{array}{l}
x=r+\sqrt{9+y}=r, \sqrt{9} \\
x=r-\sqrt{9+y}
\end{array},\right.
$$

$$
\begin{aligned}
& R_{r}:\left\{\begin{array}{l}
x=r-\sqrt{q+y} \\
x=y
\end{array}\right. \\
& r-\sqrt{9 r y} \leqslant x \leqslant y \quad 0 \leqslant d \leqslant d
\end{aligned}
$$

$$
R=R_{1} \cup R_{r}
$$

" hojig rige R_{p}.
$y^{r}=f-f x \rightarrow y= \pm \sqrt{t_{-1}+r_{x}},, \dot{S}_{,} b(b$
$y^{r}=t-x \rightarrow y= \pm \sqrt{t-x} \quad(0, r)$
$R_{1}:\left\{\begin{array}{l}y=\sqrt{f-x} \quad ل \quad \sqrt{f-f_{x}} \leqslant y \leqslant \sqrt{f-x}(0,-r) \\ y=\sqrt{f-f_{x}} 0_{0}^{\prime t} \quad 0 \leqslant x \leqslant 1\end{array}\right.$

$R_{r}:\left\{\begin{array}{lc}y=\sqrt{k-x} \quad y^{6} & -\sqrt{f-x} \leqslant y \leqslant \sqrt{f-x} \\ y=-\sqrt{F-x} \quad{ }^{j}! & 1 \leqslant x \leqslant f\end{array}\right.$
$R_{w}:\left\{\begin{array}{l}y=-\sqrt{f-r^{2} x} \quad, \quad-\sqrt{t-x} \leq y \leq-\sqrt{t-f x} \\ y=-\sqrt{f-x} 0_{0}^{f} \quad, \leq x \leq 1\end{array}\right.$

$$
\begin{aligned}
& x=k-y^{r} \quad \rightarrow-\quad \frac{1}{r}(k-)^{r} \leqslant x \leqslant r-g^{r} \\
& x=\frac{1}{F}\left(k-y^{r}\right) \quad \Rightarrow \quad-r \leqslant y \leqslant r
\end{aligned}
$$

要化 $y \geqslant 0, x+r y=r \quad x=y^{r}$.

$$
\begin{aligned}
& R_{1}: \sqrt{x} \leqslant y \leqslant \frac{1}{r}\left(R_{x}\right) \quad \leqslant x \leqslant 1 \\
& R_{r}: \quad \cdot \leqslant y \leqslant \frac{1}{r}\left(e_{x} x\right) \quad 1 \leqslant x \leqslant r \\
& R=R_{1} \cup R_{r} \\
& :-1, \text { aclo }{ }^{\circ} \\
& x=1 \text { rery =-1, } \\
& x=y^{r} \quad \because \\
& y^{r} \leqslant x \leqslant r-r y \\
& \text { - } \leq y \leq 1
\end{aligned}
$$

V］wise

$$
I=\int_{0}^{1} \int_{0}^{r}\left(x^{r}+4\right)^{r} d y d x=\left.\int_{0}^{1}\left[x^{r} y+\frac{1}{r} y^{r}\right]\right|_{0} ^{r} d x
$$

 $=\int_{0}^{1}\left(r x^{r}+\frac{\Lambda}{r}\right) d x=\frac{10}{r}$

少

$$
I=\int_{0}^{r} \int_{0}^{1}\left(x^{r}+y^{r}\right) d x d y=\left.\int_{0}^{r}\left(x^{r} / r+x y^{r}\right)\right|_{0} ^{r} d y=\int_{0}^{r}\left(\frac{1}{r}+y^{r}\right) d y=\frac{10}{r}
$$

$$
\begin{aligned}
& \xrightarrow[b_{g=0}]{\substack{x=x^{3}}} \\
& I=\int_{0}^{r} \int_{0}^{x^{r}} e^{\frac{y}{x}} d y d x
\end{aligned}
$$

$$
I=\int_{0}^{r} \int_{0}^{x^{r}} e^{\frac{y}{x}} \cdot d y d x=\left.\int_{0}^{r}\left(x e^{\frac{y}{x}}\right)\right|_{0} ^{x^{r}} d x=\int_{0}^{r}\left(x e^{x}-x\right) d x=(x-1) e^{x}-\left.\frac{1}{r} x^{r}\right|_{0} ^{r}=e^{r}-1
$$

$x=\sqrt{y}$ 成沙 $x=r$ 宛＂

$$
I=\int_{v}^{\psi} \int_{\sqrt{y}}^{r} e^{y / x} d x d y
$$

リs

$$
\begin{align*}
& \frac{R \int_{r a}^{2}+y=\sqrt{r a x-x^{r}}}{1 / 2} \tag{1}\\
& I=\int_{0}^{r a} \int_{0}^{\sqrt{r_{a x}-x^{r}}} x y d y d x
\end{align*}
$$

$$
\begin{aligned}
& R:\left\{\begin{array}{l}
0 \leq y \leq \sqrt{P^{2 a x-x}} \\
0 \leq x \leq r a
\end{array}\right.
\end{aligned}
$$

$$
\begin{align*}
& \rightarrow x^{r}-r a x+y^{\prime}=0 \rightarrow(x-a)^{r}+y^{\mu}=a^{r} \\
& F=\int_{0}^{r a} \int_{0}^{\sqrt{r a f-r^{r}}} x y d y d x=\left.\int_{0}^{r a}\left(\frac{x}{r} y^{r}\right)\right|_{0} ^{\sqrt{r a x-x^{r}}} d x=\int_{0}^{r a} \frac{x}{r}\left(r a x-x^{r}\right) d x=\frac{r}{r} a^{f} \\
& \text { 》, 㘳萑, R } \\
& \xrightarrow{R_{1} \cap R_{c}}\left\{\begin{array}{cc}
x=a+\sqrt{a^{r}-y^{r}} & x=a \pm \sqrt{a^{r}-y^{r}} \\
x=a-\sqrt{a^{r}-y^{r}} & 0 \leqslant y \leqslant a
\end{array}\right. \\
& \iint_{R}=\iint_{R_{1}}+\iint_{R_{r}} \rightarrow I=\int_{0}^{a} \int_{a-\sqrt{a^{r}-y^{r}}}^{x=a} x y d x d y+\int_{0}^{a} \int_{x=a}^{a+\sqrt{a^{r}-y^{r}}} x y d x d y \\
& \text { 的 } \\
& I=\int_{0}^{a} \frac{\cos y \cdot d y d x}{\sqrt{(a-x)(a-d)}} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& I=\int_{0}^{a} \int_{-}^{x} \frac{\cos y \cdot d y d x}{\sqrt{(a-x)(a-y)}}=\int_{0}^{a}(a-x)^{\frac{-1}{r}}\left[\int_{0}^{x}\left(\frac{\cos y}{\sqrt{a-y}}\right) d y\right] d x \\
& \text { 1, SNN }
\end{aligned}
$$

$$
\begin{aligned}
& x=a \\
& x=y \\
& \leq y \leq a
\end{aligned} \rightarrow I=\int_{0}^{a} \int_{y}^{a} \frac{\cos y \cdot d x d y}{\sqrt{(x-a)(y-a)}}=\int_{0}^{a} \frac{\cos y}{\sqrt{y-a}}\left\{\int_{0}^{a}(x-a)^{\frac{-}{x}} d x\right] d y
$$

$$
\int_{y}^{a}(x-a)^{\frac{1}{r}} d x=\left.r(x-a)^{\frac{1}{r}}\right|_{y} ^{a}=r(0-\sqrt{y-a})
$$

$\rightarrow I=\int_{0}^{a} \frac{\cos y}{\sqrt{y-a}}(-r \sqrt{y-a}) d y=-r \int_{0}^{a} \cos y d y=-\left.r \sin y\right|_{0} ^{a}=-r \sin a$

$$
I=\int_{0}^{r a} \int_{\frac{1}{r a} x^{r}}^{r a-x}\left(x^{r}+y^{r}\right) d x d y=\left.\int_{0}^{r a}\left(x^{r} y+\frac{1}{r} y^{r}\right)\right|_{\frac{x^{r}}{r a}} ^{r a-x} d x
$$

$=\int_{0}^{r a}\left[x^{r}(r a-x)+\frac{1}{\mu}(r a-x)^{\mu}-\frac{x^{r}}{r^{r} a}-\frac{x^{\varphi}}{1 r a^{\mu}}\right] d x=\frac{r^{\mu} F^{\mu}}{r^{r} G} a^{\psi}$

$$
=2(0)+1, j i) 1 k_{r}, R_{1}
$$

$$
I=\int_{0}^{a r \sqrt{a y}} \int_{0}^{r}\left(x^{r}+y^{r}\right) d x d y+\int_{a}^{r a} \int_{0}^{r a-y_{1}}\left(x^{r}+y^{r}\right) d x d y \quad=2 ; 0^{r} y^{r} 3 d^{3} 0^{2}-r^{r}
$$

(da $=d x d y$)
(9)

$$
N^{\prime} \cdot \beta y=r, y=0 \quad R \quad x+y=r \quad, y=f x
$$

 ,

$$
I=\int_{0}^{r} \int_{\frac{1}{F} g}^{r-y}\left(x^{r}+y^{r}\right) d x d y=\left.\int_{0}^{r}\left(\frac{1}{r} x^{r}+x y^{r}\right)\right|_{\frac{r}{r} y} ^{r-y} d y=\int_{0}^{r}\left(\frac{(r-q)}{r}+(r-y) y^{r}-\frac{y^{r}}{19 r}-\frac{y^{r}}{r}\right] d y=\frac{r}{\frac{r}{r}}
$$

$$
\begin{aligned}
& Q_{1}: \begin{cases}y=\sqrt{1 x} & ل! \\
y=\sqrt{1 x-x^{7}} & y_{0}^{\prime 2}\end{cases} \\
& \begin{array}{l}
\left\{\begin{array}{l}
x^{r}+y^{2} y x=0 \\
y=x
\end{array} \rightarrow \begin{array}{l}
x=0 \\
x=1
\end{array}\right. \\
\left\{\begin{array}{l}
y=\sqrt{1 x} \\
y=x
\end{array} \rightarrow x=\begin{array}{l}
x=0 \\
x=r
\end{array}\right.
\end{array}
\end{aligned}
$$

Rr: $\begin{cases}y=\sqrt{r x} & y v_{0} \\ y=x & \text { un } \\ 1 \leq x\end{cases}$

$$
I=\iint_{R}=\iint_{R_{1}}+\iint_{R_{R}}
$$

$I=\int_{0}^{1} \frac{x-x^{r}}{r}\left(r x-r x+x^{r}\right) d x+\int_{1}^{r} \frac{x}{r}\left(r x-x^{r}\right) d x=\frac{v}{r r}$

$$
\iint_{R} y^{\mu} d A=\iint_{R} \sin x d A=0
$$

@material_world

$$
\begin{align*}
& =\iint_{R} \sin x d A+\iint_{R} g^{\mu} d A+r \iint_{R} d A \\
& =0+0+r \iint_{R} d A=r(R \circ \nu=\sigma)=r(\pi)=r \pi \tag{II}
\end{align*}
$$

$$
I=\int_{0}^{\pi} \int_{0}^{\frac{\pi}{r}} e^{x+\sin y} \cos y d y d x=\int_{0}^{\pi} e^{x}\left[\int_{0}^{\frac{\pi}{r}} \cos y e^{\sin y} d y\right] d x=\left.\int_{0}^{\pi} e^{x} \cdot e^{\sin y}\right|_{0} ^{\frac{\pi}{r}} d x
$$

$$
I=(e-1) \int_{n}^{\pi} e^{x} d x=\left(e^{\pi}-1\right)(e-1)
$$

$$
\begin{aligned}
& I=\iint_{x^{r}+y^{r} \leq 1}\left(\sin x+y^{\mu}+{ }^{\mu}\right) d A
\end{aligned}
$$

$$
\begin{aligned}
& \iint_{R} f(x) d A=0 \quad, \quad \iint_{R} g(g) d A=0
\end{aligned}
$$

Uه जf

(1) $I=\iint_{R} \frac{x^{r}}{1+y^{r}} d A$
$R: \begin{aligned} & 0 \leq x \leq 1 \\ & : \leq y \leq 1\end{aligned}$
(1) $I=\int_{R}^{R} \frac{d A}{(x+y+1)^{r}}$
$R:$
: $: \leq x \leq 1$
$1 \leq y \leq 1$
(P) $I=\iint_{R} x^{r} y \cos \left(x y^{r}\right)^{r} d A$
$R: \begin{aligned} & : \leq x \leq \frac{\pi}{5} \\ & : \leq y \leq r\end{aligned}$
(f) $I=\iint_{R}\left(x^{r}+y^{r}\right) d A$

R: $y=x^{r}$
(d) $I=\int_{R}^{R} \int_{R}(x+y) d A$

(9) $I=\iint_{R} \cos (x+y) d A$
$R:\left\{\begin{array}{l}x=0 \\ y=\pi \\ y=x\end{array}\right.$
(v) $I=\iint_{R} x^{r} y^{r} \sqrt{1-x^{\mu}-y^{\mu}} d A$
$R:\left\{\begin{array}{l}x^{\mu}+y^{\mu}=1 \\ x \geq 0 \\ y \geqslant 0\end{array}\right.$
(1) $I=\int_{-r}^{r} \int_{-1}^{1}\left|x^{r} y^{r}\right| d y d x$
(9) $I=\int_{-r}^{r} \int_{-1}^{1}\left[x^{r}\right] y^{r} d y d x$
(1.) $I=\int_{-r}^{r} \int_{-1}^{1}\left[x^{r}\right]\left|y^{r}\right| d y d x$
(II) $I=\int_{1 / T}^{1} \int_{0}^{r x} C_{0}\left(n x^{x}\right) d y d x$
(ii) $I=\int_{0}^{1} \int_{y^{x}}^{y} \sqrt{\frac{y}{x}} d x d y$
(11) $I=\int_{0}^{1} \int_{0}^{1}|x-y| d y d x$
(11) $I=\int_{0}^{1} \int_{0}^{1} \frac{x-y}{(x+y)^{2}} d y d x$
(14) $I=\int_{0}^{1} \int_{y}^{1} e^{\frac{y}{x}} d x d y$
(9) $I=\int_{0}^{1} d y \int_{y}^{\sqrt{y}} f(x, y) d x$
(11) $I=\int_{-1}^{1} d x \int_{0}^{\sqrt{1-x^{r}}} f(x, y) d y$
(19) $I=\int_{-r}^{r} \int_{-\frac{\sqrt{15-x}}{\sqrt{r}}}^{\frac{\sqrt{t-x^{r}}}{\sqrt{r}}} \underset{-1}{x}(x) d y d x$
(1.) $I=\int_{1}^{r} \int_{x}^{r x} f(x, y) d y d x$
(11) $I=\int_{0}^{r} \int_{r x}^{4-x} f(x, y) d y d x$
(13) $I=\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x+\int_{1}^{r} \int_{0}^{r-x} f(x,-y) d y d x$
(14) $I=\int_{0}^{1} \int_{0}^{x^{r}} f(x, y) d y d x+\int_{1}^{\mu} \int_{0}^{\frac{1}{r}(r-x)} f(x-y) d y d x$
(10) $I=\int_{0}^{1} \int_{0}^{\frac{1}{4} x^{r}} f(x, y) d y^{y+} \int_{1}^{r} \int_{0}^{1-\sqrt{f x-x^{r}-r}} f(x, q) d y d x$

(1) $\frac{\pi}{r}$
(1) $\ln \frac{r}{c}$
(1) $\frac{-\pi}{14}$
(1) $\frac{r r}{1 r}$
(d)
(4) $-r$
(v) $\frac{f}{1 r d}$
(A) $\frac{\lambda}{r}$
(a) \cdot
(10) $D-\sqrt{r}-\sqrt{r}$
(11) $\frac{-\sqrt{r}}{r \pi}$
(11) $\frac{1}{5}$
(11) $\frac{1}{r}$
(IT) $\frac{1}{r}, \frac{-1}{r}$
 =
(16) $\frac{e-1}{r}$
(19) $I=\int_{0}^{1} \int_{x^{r}}^{x} f(x, y) d y d x$
(1v) $I=\int_{0}^{1} \int_{-\sqrt{1-y^{r}}}^{\sqrt{1-y^{r}}} f(x, y) d x d y$
(11) $I=\int_{0}^{a} \int_{a-\sqrt{a^{r}-y^{r}}}^{y} f(x, y) d x d y$
(19) $I=\int_{-\sqrt{r}}^{\sqrt{r}} \int_{-\sqrt{k-r y^{r}}}^{\sqrt{k+y^{r}}} f(x, y) d x d y$
(1.) $I=\int_{1}^{r} \int_{1}^{y} f(x, y) d x d y+\int_{r}^{r} \int_{y}^{r} f(x, y) d x d y$
(11) $I=\int_{0}^{t} \int_{0}^{\frac{y}{r}} f(x, y) d x d y+\int_{c}^{4} \int_{0}^{r-\frac{y}{q}} f(x, y) d x d y$
(11) $I=\int_{0}^{1} \int_{y}^{r-y} f(x, y) d x d y$
(1) $I=\int_{0}^{1} \int_{\sqrt{y}}^{r-r y} f(x, y) d x d y$
(10) $I=\int_{0}^{1} \int_{\frac{r}{r}}^{r-\sqrt{r y-y^{r}}} f(x, y) d x d y$

$$
\begin{aligned}
& I=\int_{-\frac{\pi}{r}}^{\frac{\pi}{r}} \int_{0}^{a \cos \theta} \sqrt{a^{r}-r^{r}} \cdot r d r \cdot d \theta=\int_{-\frac{\pi}{r}}^{\frac{\pi}{r}}\left[\int_{0}^{a \cos \theta} r\left(a^{r}-r^{r}\right)^{\frac{1}{r}} \cdot d r\right] \cdot d \theta \\
& =\left.\int_{-\frac{\pi}{r}}^{\frac{\pi}{r}}\left[-\frac{1}{r}\left(\frac{r}{r}\right)\left(a^{r}-r^{r}\right)^{r}\right]\right|_{0} ^{a \cos \theta} \cdot d \theta=\int_{-\frac{\pi}{r}}^{\frac{\pi}{r}}-\frac{1}{r}\left[\left(a^{r}-a^{r} \cos ^{r} \theta\right)^{\frac{r}{r}}-\left(a^{r}\right)^{r r}\right] d \theta \\
& I=\int_{-\frac{\pi}{r}}^{\frac{\pi}{r}} \frac{-1}{r}\left(a^{r} \sin ^{r} \theta-a^{r}\right) d \theta=\frac{a^{r}}{r} \int_{-\frac{\pi}{r}}^{\frac{\pi}{r}}\left(1-\sin ^{r} \theta\right) d \theta \\
& I=\frac{a^{r}}{r}\left[\left.\theta\right|_{-\frac{\pi}{r}} ^{\frac{\pi}{r}}-\int_{-\frac{\pi}{r}}^{\frac{\pi}{r}} \cdot \sin ^{r} \theta \cdot \sin \theta \cdot d \theta\right]=\frac{a^{r}}{r}\left(\pi-\frac{f}{r}\right) \\
& d=\cos \theta \\
& d u=-\sin \theta \cdot d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\int_{\frac{\pi}{4}}^{\int_{1}^{\frac{\pi}{4}}} \operatorname{Arctg}\left(\frac{r \sin \theta}{r \cos \theta}\right) r d r d \theta=\int_{\frac{\pi}{4}}^{\frac{\pi}{r}}\left[\int_{1}^{r} r d r\right] \theta \cdot d \theta=\left.\int_{-\frac{\pi}{r}}^{\frac{\pi}{r}} \frac{r^{r}}{r}\right|_{1} ^{r} \cdot \theta d \theta=\int_{\frac{\pi}{4}}^{\frac{\pi}{r}} \frac{\pi}{r}(9-1) \theta \theta \\
\left.A r \operatorname{tg}(\operatorname{tg} \theta)=0 \quad I=r\left(\frac{1}{r} \theta\right)\right)_{\frac{\pi}{4}}^{\frac{\pi^{4}}{4}}=r\left(\frac{\pi^{r}}{4}-\frac{\pi r}{r 4}\right)^{r}=\frac{\pi^{r}}{4}
\end{array}
\end{aligned}
$$

J,
00 $\begin{gathered}\substack{r \\ x+y^{r} \leq 1 \\ x \geqslant 0, y \geqslant 0}\end{gathered} \quad I=\iint_{R} \ln \left(1+x^{r}+y^{r}\right)^{r} d A$
J $110 \stackrel{N}{\circ}$

 (a) $=\frac{1}{1}, \dot{x},-(31) \int \ln \left(1+x^{r}+y^{2}\right) d y$

$$
\begin{aligned}
& 0 \leq 1 \leq u \\
& 0 \leq \theta \leq \frac{\pi}{r}
\end{aligned}
$$

$$
I=\int_{0}^{\frac{\pi}{r}} \int_{0}^{r} \ln \left(1+x^{r}\right) \cdot r d r d \theta
$$

$$
u=\ln \left(1+r^{r}\right) \rightarrow d u=\frac{r r}{1+r^{r}} d r
$$

$$
d v=r d r \rightarrow \quad v=\frac{1}{r} r^{r}
$$

$$
\rightarrow \int \ln \left(1+r^{r}\right) r d r=\frac{1}{r} r^{r} \cdot \ln \left(1+r^{r}\right)-\int \frac{1}{r} \frac{r r^{\mu}}{1+r^{r}} d r
$$

$$
\begin{aligned}
& \quad \int\left(r-\frac{r}{1+r^{r}}\right) d r=\frac{1}{r} r^{r}-\frac{1}{r} \ln \left(1+r^{r}\right) \\
& I=\left.\int_{0}^{\frac{\pi}{r}}\left[\frac{1}{r} r^{r} \ln \left(1+r^{r}\right)-\frac{1}{r} r^{r}+\frac{1}{r} \ln \left(1+r^{r}\right)\right]\right|_{0} ^{a} \theta \\
& \left.I=\left[\frac{1}{r} a^{r} \ln \left(1+a^{r}\right)-\frac{1}{r} a^{r}+\frac{1}{r} \ln \left(1+a^{r}\right)\right]\right]_{0}^{\frac{\pi}{2}} d \theta=\frac{\pi}{r}\left[\left(1+a^{r} \ln \left(1+a^{r}\right)-a^{r}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& R^{2+r=1}
\end{aligned}
$$

-, i,
ण ن.

$$
\begin{aligned}
& I=\int_{0} \int_{0} \sqrt{\frac{1-r^{r}}{1+r^{r}}} r d r d \theta=\int_{0}^{\pi / r}\left[\int_{0}^{1} \sqrt{\frac{1-r^{r}}{1+r^{r}}} r d r\right] d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
r=0 \rightarrow u=1 \\
r=1 \rightarrow u=\sqrt{r} \\
r \stackrel{r}{=} u-1 \rightarrow 1-r^{r}=r-u^{r}
\end{array} \rightarrow \int_{0}^{1} \sqrt{\frac{1-r^{r}}{1+r^{r}}} r d r=\int_{1}^{\sqrt{r}} \sqrt{\frac{r-u^{r}}{u^{r}}} \cdot u d u \\
& =\int_{1}^{\sqrt{r}} \sqrt{r-u^{r}} d u=\left.\left[\frac{u}{r} \sqrt{r-u^{r}}+\operatorname{Arcsin} \frac{u}{\sqrt{r}}\right]\right|_{1} ^{1} \sqrt{r}=\frac{\pi}{\varepsilon}-\frac{1}{r} \\
& \left.\rightarrow I=\int_{0}^{\frac{\pi}{r}} \frac{\frac{r}{r}}{r}-\frac{1}{r}\right) d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { ही }
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{m} \int_{0}^{1}(a-r r \cos \theta-r r \sin \theta) r d r d \theta \\
& ==\int_{0}^{r \pi} \int_{0}^{r}\left(a r-(r \cos \theta+r \sin \theta) r^{r}\right] d \theta=\left.\int_{0}^{r \pi}\left[\frac{a}{r} r^{r}-\frac{1}{r}(r \cos \theta+r \sin \theta) r^{r}\right]\right|_{0} ^{1} d \theta \\
& I=\int_{0}^{r \pi}\left(\frac{a}{r}-\frac{r}{r} \cos \theta-\sin \theta\right) d \theta=\left.\left(\frac{a}{r} \theta-\frac{r}{r} \sin \theta+\cos \theta\right)\right|_{0} ^{r \pi}=\pi a
\end{aligned}
$$

$$
I=\iint_{R} y^{r} d A
$$

diui)

$$
I=\int_{0}^{r \pi} \int_{0}^{a(1+\cos \theta)}(r \sin \theta)^{r} r d r d \theta=\left.\int_{0}^{r \pi}\left(\sin ^{r} \theta\right)\left(\frac{1}{r} r^{r}\right)\right|_{0} ^{a(1+\cos \theta)} d \theta
$$

$$
I=\frac{a^{+}}{r} \int_{0}^{r \pi} \sin ^{r} \theta(1+\cos \theta)^{r} d \theta=\frac{a^{*}}{r} \int_{0}^{r \pi} \sin ^{r} \theta \cdot\left(1+r \cos \theta+C_{s}^{r} \theta\right)^{r} d \theta
$$

$$
T=\frac{M \pi}{m} \pi a^{k}
$$

$$
\begin{aligned}
& \text { - } \leqslant r \leqslant a(1+\operatorname{Cos} \theta) \\
& \text { - } \leq \theta \leq r \pi
\end{aligned}
$$

(1) $I=\int_{0}^{a} \int_{0}^{\sqrt{a^{r}-x^{r}}} \ln \left(1+x^{r}+y^{r}\right) d y d x$
(1) $I=\iint_{R} \sqrt{\frac{1-x^{2}-y^{r} r}{1+x^{r}+y^{r}}} d A$
(1) $I=\iint_{R} \sqrt{a^{r}-x^{r}-y^{r}} d A \quad R: x^{r}+y^{r} \leqslant a z \quad R:\left\{\begin{array}{l}x^{r}+y^{r} \neq 1 \\ x \geqslant 0 . \\ y \geqslant 0\end{array}\right.$
(1) $I=\iint_{R}^{R} \operatorname{Arctg} \frac{y}{x} d A$

$$
R:\left\{\begin{array}{l}
x^{r}+y^{r} \geqslant 1 \\
x^{r}+y^{r} \geqslant 9 \\
y \geqslant \frac{1}{\sqrt{2}} x \\
y \leqslant \sqrt{\sqrt{x} x}
\end{array}\right.
$$

(d) $I=\iint_{R} \sqrt{a^{r}-x^{r}-y^{r}} d A \quad R_{:} \begin{gathered}\left(x^{r}+y^{r}\right)^{r}=a^{r}\left(x^{r}-y^{r}\right) \quad \text { ar } \dot{x \geqslant 0}, \sim_{i}\end{gathered}$

(4) $I=\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$
$\vee I=\int_{0}^{r} \int_{0}^{x} f\left(\sqrt{x^{r}+y^{r}}\right) d y$
(A) $I=\iint_{R} f(x, y) d A$
$R:\left\{\begin{array}{l}y=-x \\ y=x \\ y=1\end{array}\right.$
(9) $I=\int_{-1}^{1} \int_{x^{r}}^{1} f\left(\frac{y}{x}\right) d y d x$
(10) $I=\iint_{R} f(x, y) d A$

(1) $\frac{\pi}{f}\left[\left(1+a^{r}\right) \ln \left(1+a^{r}\right)-a^{r}\right]$
(r) $\frac{\pi(\pi-r)}{n}$
(1) $\frac{a^{r}}{p^{r}}\left(\pi-\frac{f}{r}\right)$
(f) $\frac{\pi^{r}}{4}$
(d) $\left(\frac{\pi}{r}-\frac{r \sqrt{r}-r_{0}}{a}\right) \frac{a^{r}}{r}$
(4) $I=\int_{0}^{\frac{\pi}{r}} \int_{0}^{\frac{1}{\cos \theta}} r f(r \cos \theta, r \sin \theta) d r d \theta+\int_{\frac{\pi}{r}}^{\frac{\pi}{r}} \int_{0}^{\frac{1}{\sin \theta}} r f(r \cos \theta, r \sin \theta) d r d \theta$
(1) $I=\int_{\frac{\pi}{6}}^{\frac{r \pi}{6}} \int_{0}^{\frac{1}{\sin \theta}} r f(r \cos \theta, r \sin \theta) d r d \theta$
(v) $I=\int_{0}^{\frac{\pi}{r}} \int_{0}^{\frac{r}{c \theta}} f(r) r d r d \theta$
(9) $I=\int_{0}^{\frac{\pi}{6}} \frac{\pi}{6} f(\operatorname{tg} \theta) d \theta \int_{0}^{\frac{\sin \theta}{\cos ^{2} \theta} r d r+\int_{\frac{\pi}{r}}^{\frac{\pi}{6}} \int_{0}^{\frac{\pi}{4}} f(\sin \theta) r d r d \theta+\int_{\frac{\mu \pi}{6}}^{\pi} \int_{0}^{\frac{\sin \theta}{\cos ^{2} \theta}} f((y \theta) r d r d \theta}$
(1.) $I=\int_{0}^{\pi} \int_{0}^{a \sin \theta} f(r \cos \theta, r \sin \theta) r d r d \theta$

$$
R:\left\{\begin{array}{l}
y-x=-r \\
y-x=1 \\
y+\frac{x}{r}=\frac{v}{r} \\
y+\frac{x}{r}=d
\end{array}\right.
$$

$$
I=\iint_{R}(y-x) d A
$$

$$
u=y-x \quad, \quad v=y+\frac{1}{v} x
$$

$$
J(u, v)=\frac{1}{J(x, y)}
$$

$$
y-x=-r, u=-r
$$

$\left.v, u_{0} b^{N}=1,1\right) \iint_{\Omega}(y-x) d A$

$$
\begin{align*}
& y-x=1 \rightarrow u=1 \\
& y-x=-r \rightarrow u=-\infty
\end{align*}
$$

$y+\frac{x}{r}=\frac{v}{\nu} \rightarrow v=\frac{v}{\mu}, y+\frac{x}{\nu}=\omega \rightarrow v=d$

Kil Xf: int

(e $I=\iint_{G} u d A_{1}=\int_{-r}^{1} \int_{\frac{-r}{r}}^{\frac{-r}{r}} u d v d u=\left.\frac{-r^{r}}{r} \int_{-\psi}^{1} u v\right|_{\frac{v}{r}} ^{d} d v=\frac{-r}{f}\left(\frac{v}{\psi}-\lambda\right) \int_{-r}^{1} u d u$
E

$$
I=-\wedge
$$

$d A_{1}=J(u, v) d u d v$

$$
\begin{align*}
& =I=\int_{0}^{e} \int_{\alpha x}^{\beta x} f(x, y) d y d x \\
& J(u, v)=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|=\left|\begin{array}{cc}
1-v & -u \\
v & u
\end{array}\right|=u \tag{C}
\end{align*}
$$

, oigicict v, u 。

$$
\left.\left.\begin{array}{l}
x=u-u v \\
y=u v \rightarrow\left\{\rightarrow \left\{-y \rightarrow\left\{\begin{array}{l}
y=\alpha x \rightarrow x=u-\alpha x \rightarrow u=(1+\alpha) x \\
y=\beta x \rightarrow x=u-\beta x \rightarrow u=(1+\beta) x
\end{array}\right.\right.\right. \\
y=u v \rightarrow\left\{\begin{array}{l}
y=\alpha x \\
u=(1+\alpha) x
\end{array} \rightarrow \alpha x=v(1+\alpha) x \rightarrow v=\frac{\alpha}{1+\alpha}\right. \\
x \neq 0
\end{array}\right] \begin{array}{l}
y=u v \rightarrow\left\{\begin{array}{l}
y=\beta x \\
u=(1+\beta) x
\end{array} \rightarrow \beta x=v(1+\beta) x \rightarrow v=\frac{\beta}{1+\beta}\right. \\
x \neq 0
\end{array}\right] \begin{aligned}
& x=0, y=0 \rightarrow\left\{\begin{array}{c}
u-u v=0 \\
u v=0
\end{array} \rightarrow u=0\right.
\end{aligned}
$$

$x=e \rightarrow e=u-u v \rightarrow u=\frac{e}{1-v} \quad G \rightarrow a$,

$$
\begin{aligned}
& x+y=1 \overrightarrow{v=1} \\
& y=0 \rightarrow\left\{\begin{array}{l}
u=x-0 \\
v=x+0
\end{array} \rightarrow u=v, x=0 \rightarrow\left\{\begin{array}{l}
u=0-y \\
v=0+y
\end{array}, v=-u\right.\right.
\end{aligned}
$$

 $I=\iint \operatorname{Cos} \frac{u}{v} d A=\frac{1}{4} \int_{-}^{1} \int_{0}^{v}, \quad, \operatorname{Col}$

$$
I=\left.\frac{1}{r} \int_{-}^{1} v\left(\sin \frac{u}{v}\right)\right|_{-v} ^{v} d v=\frac{1}{r} \int_{-}^{1}(r \sin 1) v d v
$$

$$
I=\frac{1}{r} \operatorname{Sin}(1)
$$

11 =

$$
I=\iint_{R} d A
$$

$$
\left\{\begin{aligned}
x^{r}+r y^{r}=1, & x^{r}+r y^{r}=r \\
y=r x, & y=d x
\end{aligned}\right.
$$

$$
\begin{aligned}
& u=x^{r}+r y^{r} \rightarrow 1 \leqslant u \leqslant r \\
& v=\frac{y}{x} \rightarrow r \leqslant v \leqslant d \\
& J(u, v)=1 / J(x, y) \\
& J(x, y)=\left|\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
r x & r y \\
\frac{-y}{x^{r}} & 1 / x
\end{array}\right| \\
& J(x, y)=r+\frac{x y^{r}}{x^{r}} \\
& J(u, v)=\frac{1}{r+F\left(\frac{y}{x}\right)^{r}}=\frac{1}{r\left(1+r v^{r}\right)}
\end{aligned}
$$

$$
=\iint_{G} h(u, v)|J(u, v)| d A_{r}=\int_{r}^{d} \int_{1}^{r} \frac{d u d v}{r\left(1+r v^{r}\right)}=\left.\int_{r}^{d} \frac{1}{r \sqrt{r}} A r \operatorname{cog} r r v\right|_{1} ^{k} d u
$$

$$
I=\frac{\mu}{r \sqrt{r}} \operatorname{Arctg}\left(\frac{\sqrt{r}}{r}\right)
$$

YV : wiv

(1) $I=\iint_{R} \sqrt{1-\frac{x^{r}}{a^{r}}-\frac{g^{r}}{b^{r}}} d A \quad R: \frac{x^{r}}{a^{r}}+\frac{g^{r}}{b^{r}} \leqslant 1$
(I) $I=\iint_{R} d A$ $R:\left(\frac{x^{r}}{a^{r}}+\frac{g^{r}}{b^{r}}\right)^{r}=\frac{x^{r}}{h^{r}}-\frac{g^{r}}{k^{r}} \quad r^{r} \sim \gg=\sim i$
(H) $I=\iint_{R} e^{\frac{y-x}{4+x}} d A$ $\begin{array}{ll}u=y-x \\ V=y+x\end{array} \quad R:\left.\left.C\right|_{1} ^{0} \cdot B\right|_{0} ^{1} /\left.A\right|_{0} ^{0}$,
(F) $I=\int_{0}^{1} \int_{x}^{r x} d y d x$

$$
x=u(t-v)
$$

$$
\begin{equation*}
y=u v \tag{a}
\end{equation*}
$$

Ruv: $1 \leq u \leq r$

sid'jui) miverrer (7)
$I=\iint_{R}(x-y)^{r} \sin ^{r}(x+y) d A \quad R:\left.A\right|_{0} ^{\pi},\left.\left.\theta\right|_{\pi} ^{r n} \quad c\right|_{r \pi} ^{\pi},\left.D\right|_{\pi} ^{0} \quad$ sj, , foedsc;
 $x^{r}-y^{r}=1, x^{r}-y^{r}=4 \quad R \quad x y=r \quad, x y=f$

(1) $\frac{r \pi}{r} a b$
(F) $a b\left[\left(\frac{a^{r}}{h^{r}}-\frac{b^{r}}{k^{r}}\right) \operatorname{Arctg} \frac{a k}{b h}+\frac{a b}{h k}\right]$
(1) $\frac{1}{f}\left(e-e^{-1}\right)$
(F) $\frac{1}{r}$
(d) FA
(4) $\frac{\pi^{r}}{r}$
(1) \wedge
r9) :un

در هربك ازمهسائل زير ابتدا ناحيه R را رسم :سبس همكرائى باواكرانى انتكر/الهاى دوكانه

$x \geqslant 0,-x \leq y \leq x$

$$
R:-x \leqslant y \leqslant x \quad I=\iint_{R} \int e^{-x^{r}} d A
$$

『効 $6 \cdot x \sim \because$

$$
\begin{aligned}
& I=\int_{0}^{\infty} \int_{-x}^{x} e^{-x^{r}} d y d x=\int_{0}^{\infty}\left(\int_{-x}^{x} d y\right) e^{-x^{r}} d x \\
& I=\int_{0}^{\infty}\left(\left.y\right|_{-x} ^{x}\right) e^{-x^{r}} d x=\int_{0}^{\infty}\left(r x e^{-x^{r}}\right) d x=-\left.e^{-x^{r}}\right|_{0} ^{\infty}=-(0-1)=1 \\
& \left(\left.e^{-x^{r}}\right|_{0} ^{\infty}=\left.\operatorname{Lim}_{b \rightarrow+\infty} e^{-x^{r}}\right|_{0} ^{b}=\operatorname{Lim}_{b \rightarrow \infty}\left(e^{-b^{r}}-1\right)=0-1=-1\right)
\end{aligned}
$$

$R:\left\{\begin{array}{l}y=\frac{1}{x} \\ x \geqslant 1\end{array}\right.$

- $I=\iint_{R} \frac{d A}{x+y}$

$$
I=\iint_{R} \frac{d A}{x+y}=\int_{1}^{+\infty} d x \int_{0}^{\frac{1}{x}} \frac{d y}{x+y}
$$

$$
I=\left.\int_{1}^{\infty} \ln (x+y)\right|_{0} ^{\frac{1}{x}} d x=\int_{1}^{\infty}\left[\ln \left(x+\frac{1}{x}\right)-\ln x\right]=\int_{1}^{\infty} \ln \left(1+\frac{1}{x^{r}}\right) d x
$$

ए. mis

$$
<\iint_{R} \frac{d A}{x+y}=\int_{1}^{+\infty} \ln \left(1+\frac{1}{x^{r}}\right) d x<\int_{1}^{+\infty} \frac{1}{x^{r}} d x=\left.\frac{-1}{x}\right|_{1} ^{+\infty}=-(0-1)=1
$$

$$
R:\left\{\begin{array}{l}
0 \leq x \leq 1 \tag{1}\\
\cdot \leq y \leq x^{r}
\end{array} \quad I=\iint_{R} \frac{d A}{(x+y)^{r}}\right.
$$

$$
\begin{aligned}
& I=\iint_{R} \frac{d A}{(x+y)^{r}}=\int_{0}^{1}\left(\int_{0}^{x^{r}} \frac{d y}{(x+y)^{r}}\right) d x=\left.\int_{0}^{1} \frac{-1}{(x+y)}\right|_{0} ^{x^{r}} d x \quad \text { il } \\
& I=\int_{0}^{1}\left(\frac{1}{x}-\frac{1}{x^{r}+x}\right) d x=\int_{0}^{1} \frac{d x}{x+1}=\left.\ln (x+1)\right|_{0} ^{1}=\ln r
\end{aligned}
$$

$$
R:\left\{\begin{array}{l}
y \leqslant x \\
y \geqslant x^{r}
\end{array} \quad I=\iint_{R} \frac{d A}{x y}\right.
$$

$$
\begin{aligned}
& I=\iint_{R} \frac{d A}{x y}=\int_{0}^{1} \int_{x^{r}}^{x} \frac{d y}{x y} \cdot d x=\left.\int_{0}^{1} \frac{1}{x}(\ln y)\right|_{x^{r}} ^{x} \cdot d x \\
& I=\int_{0}^{1} \frac{1}{x}\left(\ln x-\ln x^{r}\right) d x=\int_{0}^{1} \frac{1}{x} \ln \frac{1}{x} \cdot d x=-\int_{0}^{1} \frac{1}{x} \ln x \cdot d x \\
& \begin{array}{l}
u=\ln x \rightarrow\left\{\begin{array}{l}
x \rightarrow 0^{+} \\
u=u=-\infty \\
u=1 \rightarrow u=0
\end{array} \rightarrow I=-\int_{-\infty}^{0} u d u=\left.\frac{-1}{r} u^{r}\right|_{-\infty} ^{0}=-\infty\right.
\end{array}, \rightarrow-
\end{aligned}
$$

$$
\frac{\text { r1 wis }}{J_{4} R \quad R:\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0 \tag{4}
\end{array} \quad I=\iint_{R} e^{-(x+y)^{r}} d A\right.}
$$

$$
\begin{aligned}
& I=\int_{0}^{+\infty} \int_{0}^{+\infty} e^{-\left(x^{r}+y^{r}\right)} d y d x=\int_{0}^{\frac{\pi}{r}} \int_{0}^{+\infty} e^{-r^{r}} r d r d \theta=\left.\int_{0}^{\frac{\pi}{r}} \frac{-1}{r} e^{-r^{r}}\right|_{0} ^{+\infty} d \theta \\
& I=\int_{0}^{\frac{\pi}{r}} \frac{-1}{r}(0-1) d \theta=\frac{1}{r}\left(\frac{\pi}{r}\right)=\frac{\pi}{r}
\end{aligned}
$$

(尘icc a $\quad I=\int_{0}^{\infty} \int_{0}^{\infty} x y e^{\left.-\left(x^{r}+\right)^{\gamma}\right)} \cdot d y d x(9)$

$$
\begin{aligned}
& I=\int_{0}^{\frac{\pi}{r}} \int_{0}^{\infty} r^{r} \cos \theta \sin \theta e^{-r^{r}} \cdot r d r d \theta=\frac{1}{r} \int_{0}^{\frac{\pi}{r}} \sin r \theta\left(\int_{0}^{\infty} r^{r} e^{-r} d r\right) d \theta \\
& \int r^{r} e^{-r^{r}} d r=\int r^{r} \cdot r e^{-r} d r \rightarrow\left\{\begin{array}{l}
u=r^{r} \\
d v=r e^{-r} d r \quad d u=r r d r \\
v=\frac{-1}{r} e^{-r}
\end{array}\right. \\
& \int^{r} r^{r} e^{-r^{r}} d r=\frac{-1}{r} r^{r} e^{-r^{r}}+\frac{1}{r} \int r r e^{-r} d r=\frac{-1}{r} r^{r} e^{r}-r^{r}-\frac{1}{r} e^{-r^{r}}=\frac{-1}{r}\left(r^{r}+1\right) e^{-r^{r}} \\
& \int_{0}^{+\infty} r^{r} e^{-r^{r}} d r=\left.\operatorname{Lim}_{b \rightarrow \infty} \frac{-1}{r}\left(r^{r}+1\right) e^{-r^{r}}\right|_{0} ^{b}=\frac{-1}{r} \operatorname{Lim}_{b \rightarrow+\infty}\left(b^{r}+1\right) e^{-b^{r}}-\left(\frac{-1}{r}\right) \\
& \left.\operatorname{Lim}_{b \rightarrow \infty} \frac{b^{r}+1}{e^{b^{r}}}=0 \rightarrow \int_{0}^{+\infty} r^{r} e^{-r^{r}} d r=\frac{1}{r} \rightarrow I=\left(\frac{1}{r}\right)^{r} \int_{0}^{\frac{\pi}{r}} \delta_{m}^{r} \theta d \theta=\frac{1}{r} \cdot\left(\frac{-1}{r} \operatorname{Cor} \theta\right)\right)^{\frac{\pi}{r}} \\
& I=\frac{-1}{\pi}(-1-1)=\frac{1}{r}
\end{aligned}
$$

(1) $I=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d x d y}{1+x^{r}+y^{r}}$
(1) $I=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{d x d y}{\left(1+x^{r}+y^{r}\right)^{r} / \frac{1}{r}}$
(1) $I=\int_{0}^{\infty} \int_{0}^{\infty} \frac{d x d y}{\left(a^{r}+x^{r}+y^{r}\right)^{r}}$
(1) $I=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-|x|-|z|} d x d y$
(d) $I=\int_{0}^{\infty} \int_{0}^{\infty}(x+y) e^{-(x+y)} d x d y$
(9) $I=\int_{0}^{\infty} \int_{0}^{\infty} x y e^{-\left(x^{r}+y^{r}\right)} d x d y$
(1) $I=\int_{0}^{\infty} \int_{x}^{\infty} e^{-y^{r}} d y d x$
(1) $I=\int_{0}^{\infty} d x \int_{r x}^{\infty} x e^{-y} \frac{\sin y}{y^{r}} d y$
(9) $I=\int_{0}^{1} \int_{0}^{y^{r}} e^{\frac{x}{y}} d x d y$
(10) $I=\iint_{R} \frac{d A}{x^{r}+y^{r}} \quad R:\left\{\begin{array}{l}x \geqslant 1 \\ y \geqslant x^{r}\end{array}\right.$

> (1)
> 1,110
> (1) $\Gamma \pi$
> (1) $\frac{\pi}{\mathrm{Fa}^{r}}$
> (1) 5
> (d) r
> (4) $\frac{1}{5}$
> (1) $\frac{1}{r}$
> (A) $\frac{1}{4}$
> (9) $\frac{1}{r}$
> (1.) $\frac{\pi}{6}$

$$
\begin{aligned}
& \text { [if: wie } \\
& \text {-i. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - jो } \\
& d=\int_{r}^{r} \int_{\varphi-y}^{r y-y^{r}} d x d y=\left.\int_{r}^{r} x\right|_{9-y} ^{r-y-y^{r}} \cdot d y=\int_{r}^{r}\left[\left(r y-y^{r}\right)^{r}-(9-y)\right] d y=\frac{1}{9}
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\theta=\frac{\pi}{4}}_{2 r=1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - مे் ír } \\
& \left\{\begin{array}{l}
r=1 \\
r=\frac{r}{\sqrt{r}} \cos \theta \rightarrow \frac{r}{\sqrt{r}} \cos \theta=1
\end{array}\right. \\
& \cos \theta=\frac{\sqrt{r}}{c} \quad \theta=\frac{\pi}{4} \\
& A=r \int_{0}^{\frac{\pi}{4}} \int_{i}^{\frac{r}{\sqrt{r}}} r d r d \theta=\left.r \int_{0}^{\frac{\pi}{4}} \frac{1}{r} r^{r}\right|_{1} ^{\frac{r}{r^{r}}} \cos \theta=\int_{0}^{\frac{\pi}{4}}\left(\frac{r}{r^{r}} \cos \theta=\frac{\sqrt{r}}{r} \theta-1\right) d \theta \\
& A=\int^{\frac{\pi}{4}}\left(\frac{r}{x}+\frac{r}{w} \operatorname{Cos} \theta-1\right) d \theta=\frac{1}{1 \lambda}(r \sqrt{r}-\pi)
\end{aligned}
$$

$$
\begin{aligned}
\begin{array}{l}
x=r \cos \theta \\
-y=r \sin \theta
\end{array} \rightarrow \quad r^{r} & =a^{r} r^{r} \sin \theta \cos \theta \\
r^{r} & =a^{r} r^{r} \sin r \theta \rightarrow r^{r}\left(r^{r}-a^{r} \sin r \theta\right)=0 \\
r & =0 \quad r^{r}=a^{r} \sin r \theta
\end{aligned}
$$

.

$$
\begin{aligned}
& A=r \int_{0}^{\frac{\pi}{r}} \int_{0}^{a \sqrt{\sin ^{r} \theta}} r d r d \theta=\left.r \int_{0}^{\left(\frac{\pi}{r}\right.} \frac{1}{r} r^{r}\right|_{0} ^{a \sqrt{\sin r \theta}} \cdot d \theta \\
& A=r \int_{0}^{\frac{\pi}{r}} a^{r} \sin r \theta d \theta=a^{r}
\end{aligned}
$$

 ,,

$$
A=r \int_{0}^{\frac{\pi}{r}} \int_{0}^{\frac{a \sin \theta \theta_{\theta} \theta}{5 r^{\prime} \theta+c^{\prime} \theta}, ~} r d r d \theta
$$

ry
(20 (2)

$$
\begin{aligned}
& U=1+\operatorname{tg}^{r} \theta \longrightarrow \theta=0 \rightarrow \begin{array}{l}
\theta=\frac{\pi}{r} \rightarrow \\
d u=r+g^{r} \theta \cdot \frac{1}{\cos ^{r} \theta} d \theta
\end{array} \quad I=\frac{a^{r}}{r} \int_{1}^{r} \frac{d u}{u^{r}}=\frac{a^{r}}{4} \\
& d
\end{aligned}
$$

$$
\begin{equation*}
\rightarrow \quad d=\frac{1}{4} a^{r} \tag{a}
\end{equation*}
$$

Cl : مَ

$$
u v=\frac{1}{x y} \rightarrow \frac{1}{x^{2} y^{r}}=u^{r} v^{r}
$$

$$
J(u, v)=\frac{1}{J(x, y)}=\frac{1}{r^{r} u^{r} v^{r}}
$$

$$
\begin{aligned}
& \begin{cases}u=\frac{y}{x^{r}} & \frac{\partial(x, y)}{\partial(u, v)}=J(u, v)=\left|\begin{array}{ll}
x_{u} & x_{v} \\
d_{u} & d_{v}
\end{array}\right| \\
v=\frac{x}{y^{r}} & J(u, v)\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& J(x, y)=\left|\begin{array}{ll}
u_{x} & u_{y} \\
u_{x} & u_{y}
\end{array}\right|=\left|\begin{array}{cc}
\frac{-r y}{x^{r}} & \frac{1}{x^{r}} \\
\frac{1}{y^{r}} & \frac{-r x}{y^{r}}
\end{array}\right|=\frac{r}{x^{r} y^{r}}
\end{aligned}
$$

$$
\begin{aligned}
& =a^{r} \int_{0}^{\frac{\pi}{r}} \frac{\operatorname{tg}^{r} \theta \cos ^{r} \theta}{\left(1+\operatorname{tg}^{r} \theta\right)^{r}} d \theta
\end{aligned}
$$

$$
u=\frac{y}{x^{r}}
$$

(1) $y=x^{r} \rightarrow \frac{y}{x^{r}}=u=1$
$v=\frac{x}{q^{r}}$
(r) $y=r x^{r} \rightarrow \frac{y}{x^{r}}=r \rightarrow u=r$
(1) $x=y^{r} \rightarrow \frac{x}{y^{r}}=v=1$
(4) $x=r^{r} y^{r} \rightarrow \frac{x}{y^{r}}=r \rightarrow v=r$

$$
A=\iint_{R_{r}} d A=\iint_{G} J(u, v) d v d u
$$

$$
\begin{gathered}
d=\int_{1}^{r} \int_{1}^{r} \frac{1}{\mu}\left(\frac{1}{u^{r} v^{r}}\right) d v d u=\left.\frac{1}{\mu^{\mu}} \int_{1}^{r} \frac{1}{u^{r}}\left(\frac{-1}{v}\right)\right|_{1} ^{r} d u=\frac{1}{\mu} \int_{1}^{r}\left(1-\frac{1}{r}\right) \frac{1}{u^{r}} d u \\
\\
\rightarrow A=\frac{1}{9}
\end{gathered}
$$

57［x］：020

 $x=1, y=d x ; y=x$ b，be \sim ），ben -1 $\cdot \frac{x^{r}}{a^{r}}+\frac{y^{r}}{b^{r}}=1 \quad a^{2}-y^{2} e^{\frac{1}{n}} \cdot r$ $y=\frac{b}{a} x \quad$ br，$y^{r}=\frac{b^{r}}{a} x$ orr as ${ }^{\frac{b}{r}}-r$

d少愔 $(x+y)^{\mu}=x y \sim$～
$y=0, y=x<x^{r}+y^{r}=r x \quad x^{r}+y^{r}=r x \quad$ v由о

 $r=r \dot{\sigma}(\dot{\theta}), r=(r-\cos \theta)$ 的 $C, \dot{\sigma}-11$
－$y=r x^{s}-d x, y=f x-x^{r}$ वाब

 $(0<p<q ; \cdot<a<b, \cdot<c<d)$

Ma : win
浣/

(1) r
(1) $n a b$
(1) $\frac{a b}{4}$
(A) $\frac{\mu \pi}{r}$
(d) $\frac{1}{4}$
(4) $\mu\left(\frac{\pi}{6}+\frac{1}{r}\right)$
(V) $\frac{d}{r} \pi a^{r}$
(1) 10π
(9) $\frac{1}{r}(\beta-\alpha) \ln \frac{a}{b}$
(10) $r \pi-\frac{\lambda}{r}$
(11) $x-\pi$
(II) $\frac{r v}{r}$
(iii) $a^{r}\left(\frac{\sqrt{r}}{r}+\operatorname{ArcSin} \frac{\sqrt{r}}{r}\right)$
(1f) $\frac{q-p}{(p+1)(q+1)} \times\left(b^{\frac{q+1}{q-p}}-a^{\frac{q+1}{q-p}}\right)\left(c^{-\frac{p+1}{q-1}}-d^{-\frac{p_{+}}{q-1}}\right)$

ابتدا ناحيه Vا, Vا رسم ،سبس حجم شحدود بـ آن را با استفاده از انتكرال دو كانه بدست أَوريب.

 - $y=a-\frac{x^{r}}{a} \dot{\text { an }}$ jes $\left.{ }^{a}, i j ;\right), z=a-x+y$, $z, b j$

$V=\int_{-a}^{a} \int_{0}^{a-\frac{x}{a}}(a+y-x) d y d x$
by, $3 \sim \operatorname{civ} R$, ; x 㡶

$$
\begin{aligned}
& \text { (1) } j \text { = ige } \mu \iint_{R} x d A
\end{aligned}
$$

$$
\begin{aligned}
& V=\int_{-a}^{a} \int_{0}^{a-\frac{\pi}{a}}(a+y) d y d x=\int_{-a}^{a}\left(a y+\frac{1}{r} y^{r}\right)^{a-\frac{x^{r}}{a}} d x \\
& V=\int_{-a}^{a}\left[a^{r}-x^{r}+\frac{1}{r}\left(a^{r}-r x^{r}+\frac{x^{r}}{a^{r}}\right)\right] d x
\end{aligned}
$$

$$
\begin{aligned}
& V=\frac{r \lambda}{1 \pi} a^{r}
\end{aligned}
$$

Fi un

$$
\text { , } \quad x \geq-, y \geq
$$

 , $x=0$ तो, $x^{r}+y^{r}=a^{r}$ is気 -

$$
V=\int_{0}^{a \frac{\pi}{r}} \int_{0}^{\sqrt{a^{r}-x^{r}}} y d A
$$ ", w.

- $\leq \theta \leq \pi / r, \quad \leq r \leq a$

尉 $y=r \sin \theta$
[- $\sin , b_{0}, 01$
$V=\int_{0}^{\frac{\pi}{r}} \int_{0}^{a}(r \sin \theta) r d r d \theta=\int_{0}^{\frac{\pi}{r}} \sin \theta \cdot\left(\frac{1}{r} r^{r}\right)^{a} d \theta$

- -

$$
\rightarrow V=\frac{a^{r}}{r}
$$

~

疗

$$
\begin{array}{ll}
T=r \int_{0}^{\frac{\pi}{r}} \int_{0}^{r a \sin \theta} \sqrt{r a^{r}-r^{r}} \cdot r d r d \theta & \begin{array}{l}
x^{r}+y^{r}=r a y \\
r^{r}=r a r \sin \theta
\end{array} \\
T=\left.f \int_{0}^{\frac{\pi}{r}} \frac{-1}{r}\left(r a^{r}-r^{r}\right)^{\frac{r}{r}}\right|_{0} ^{r a \sin \theta} \cdot d \theta & \begin{array}{r}
r=r a \sin \theta)
\end{array} \\
=F=r a \sin \theta
\end{array}
$$

 $x^{r}+y^{r}=14, \quad z=0 \quad$ ($z=x+y+r$

(1) dos

(ir) l^{2}

$\sqrt{14-x^{1}}$ "
$V=\iint_{R}(x+y+r) d A=\int_{0}^{r} \int_{0}^{\sqrt{14-x^{r}}}(x+y+r) d y d x$
$V=\left.\int_{0}^{R}\left(x y+\frac{1}{r} y^{r}+r y\right)\right|_{0} ^{\sqrt{14-x^{r}}} \cdot d x=\int_{0}^{r}\left[x \sqrt{14-x^{r}}+\frac{1}{r}\left(14-x^{r}\right)+\sqrt{14-x^{r}}\right] d x$

$$
V=\frac{\pi \lambda}{\mu}+\Lambda \pi
$$

$z_{x \geqslant 0}=0$
 $d x d y$ in (a) ()
$z=F \rightarrow z=F-y$

$$
V=\int_{-\pi / r}^{\pi / r} \int_{0}^{r}(k-r \sin \theta) r d r d \theta
$$

$$
\begin{gathered}
T /=\int_{-\pi / r}^{\pi / r}\left(\left.\left(r^{r}-\frac{1}{\psi} r^{r} \sin \theta\right)\right|_{0} ^{r} d \theta=\int_{-\frac{\pi}{r}}^{\frac{\pi}{r}}\left(\Lambda-\frac{1}{r} \sin \theta\right) d \theta\right. \\
V=\Lambda \pi
\end{gathered}
$$

r_{x}
(H) jo
 =-10

(f) C^{6}

$$
V=\int_{0}^{1} \int_{x^{r}}^{\sqrt{x}}\left(x^{r}+F y^{r}\right) d y d x=\left.\int_{0}^{1}\left(x^{r} y+\frac{F}{r} y^{r}\right)\right|_{x^{r}} ^{\sqrt{x}} d x
$$

$$
V=\int_{0}^{1}\left[\left(x^{y} \sqrt{x}+\frac{f}{\mu} x \sqrt{x}\right)-\left(x^{f}+\frac{f}{\mu} x^{4}\right)\right] d x
$$

［14 النتا

－$z=0$ ar，$z=e^{r}-y^{r} \cdot y=e^{-x}, y=e^{x} \quad \sigma(0,1 / n)-V$
．$y+z=1 \quad, \quad z=0$ जin，$y=\ln x \quad y=\ln x \quad \sigma(\infty),-\infty 1-1$
－$z=0$ ier，$\sqrt{x}+\sqrt{y}=1$ 调化 $<z^{r}=x y$
be一 -9
，$z=x^{r}+y^{c} 0 \hat{2}$
－$z=0, x-y=0 \quad x+y=0 \quad \approx$ in
－d，$\frac{1}{\pi}$ ，$>\left(x^{r}+y^{r}\right)^{r}=r x y$
（i）$\overline{=1}, z^{r}=x y$
b， $5-11$
－$z=x, z=x / r c y=0=$ wien，$\frac{x^{r}}{a^{r}}+\frac{g^{r}}{b^{r}}=1$
i）ご－1r

FA

（2；）（u） －जी－ル心会

 ；

$$
f=z-\sqrt{1-x^{r}} \vec{\nabla} f=\frac{x}{\sqrt{1+x^{r}}} \vec{i}+\vec{k}
$$

$\vec{p} \vec{k}$ जै，ज！

$$
\begin{aligned}
& |\vec{\nabla} f|=\sqrt{\frac{x^{r}}{k-x^{r}}+1}=\frac{r}{\sqrt{k-x^{r}}} \\
& d \sigma=\frac{|\vec{\nabla} f|}{|\vec{\nabla} f \cdot \vec{k}|} d A=\frac{r}{\sqrt{k^{r}-\pi^{r}}} d A
\end{aligned}
$$

$$
\vec{\nabla} f \cdot \vec{k}=1
$$

$$
S=\iint_{\sigma^{\prime}} d \sigma=\iint_{R} \frac{r}{\sqrt{F-\pi^{r}}} d A
$$

（ر）R R ei $-b$

$$
S=\int_{0}^{1} \int_{0}^{r} \frac{r}{\sqrt{r^{r}-x^{r}}} d y d x=\left.\int_{0}^{r} \frac{r}{\sqrt{r-x^{r}}}(y)\right|_{0} ^{r} d x=f \int_{0}^{1} \frac{d x}{\sqrt{r-x^{r}}}=\left.\operatorname{tarcsin}\left(\frac{x}{y}\right)\right|_{0} ^{1}
$$

$$
S=\frac{r \pi}{r}
$$

$$
f=x^{r}+y^{r}-z \rightarrow \vec{\nabla} f=(r x) \vec{i}+(r y) \vec{j}-\vec{k}
$$

$$
\underbrace{y}_{x}=x+x^{r}+y^{r}=9
$$

$$
|\vec{\nabla} f|=\sqrt{k^{r}+f y^{r}+1}
$$

$$
\vec{p}=\vec{k} \rightarrow \vec{\nabla} f \cdot \vec{p}=-1 \rightarrow|\vec{\nabla} f \cdot \vec{k}|=1
$$

$S=\iint_{\sigma} d \sigma=\iint_{R} \sqrt{\left.F\left(x^{\prime}+y^{\prime}\right)^{\prime}\right)+1} d A$

$$
\left\{\begin{array}{l}
z=x^{r}+y^{r} \\
z=9
\end{array} \rightarrow x^{r}+y^{r}=9 \quad \text {, } 0, \text { tiv } R\right. \text { ai of }
$$

$$
S=\left.r \int_{0}^{\frac{\pi}{r}} \frac{1}{\pi} x \frac{r}{w}\left(1+F r^{r}\right)^{\frac{r}{r}}\right|_{0} ^{r} d \theta=r \int_{0}^{\frac{\pi}{r}} \frac{1}{r}\left(r^{r} v-1\right) d \theta
$$

$$
S=\frac{\pi}{4}\left(r v^{\frac{\hbar}{t}}-1\right)
$$

$$
S=r \pi d\left(h_{-}-h_{1}\right)^{l}=-\frac{1}{l} \cdot<h_{1} \leqslant h_{r} \leqslant a
$$

0

$$
\begin{aligned}
& x^{r}+y^{r}=a^{r}-z^{r} \\
& z=h_{1} \rightarrow x^{r}+y^{r}=a^{r}-h_{1}^{r} \\
& z=h_{r} \rightarrow x^{r}+y^{r}=a^{r}-h_{r}^{r}
\end{aligned}
$$

$$
S=F \iint_{R} \frac{|\nabla f|}{|\nabla f \cdot \vec{k}|} d A
$$

$$
f=x^{r}+y^{r}+z^{r}-a^{r}
$$

$$
\begin{aligned}
& f=x+y+z-a \\
& \vec{\nabla} f=r x \vec{i}+r y \vec{j}+r z \vec{k} \rightarrow|\vec{\nabla} f|=\sqrt{k\left(x+y^{r}+z^{r}\right)}
\end{aligned}
$$

1, $x^{r}+y^{r}+z^{r}$ GUs (

$$
|\vec{\nabla} f|=r a \quad,|\vec{\nabla} f \cdot \vec{k}|=|r z|=r z \rightarrow z=\sqrt{a^{r}-x^{r}-y^{r}}
$$

$$
S=r \iint_{R} \frac{r a}{r \sqrt{a^{r}-\left(a^{r} r^{r}\right)}} d A
$$

$$
\left.S=r \int_{0}^{\frac{\pi}{r}} \int_{d}^{c} \frac{r a}{r \sqrt{a^{r}-r^{r}}} r d r d \theta=\left.f a \int_{0}^{\frac{\pi}{r}}\left(-\sqrt{a^{r}-r^{r}}\right)\right|_{d} ^{c} d \theta=r a \int_{0}^{\frac{\pi}{\sqrt{r}} \sqrt{a^{r}-c^{r}}-\sqrt{a^{2}-d^{r}}}\right) \theta \theta
$$

$$
S=r a(h-h) \pi
$$

（4）

$$
x^{r}+y^{\prime}=\operatorname{ray}>r^{r}-\operatorname{rarsin} \theta=0
$$

$$
|\bar{\nabla} \cdot f \cdot \bar{x}|=|r z|=r \sqrt{4 a^{r}-\left(x^{r}+y^{r}\right)}
$$

$$
S=r \iint_{R} \frac{r a}{r \sqrt{F^{r}-\left(x^{r}+y^{r}\right)}} d A=r a \int_{0}^{\pi} \int_{0}^{r a \sin \theta}\left(r a^{r}-r^{r}\right)^{\frac{-1}{r}} d r d \theta
$$

$S=\left.r a \int_{0}^{\pi}\left[-\left(r a^{r}-r^{r}\right)^{\frac{1}{r}}\right]\right|_{0} ^{r a \sin \theta} d \theta=r a \int_{0}^{\pi}\left[r a-\sqrt{r a^{r}-r a^{r} \sin ^{r} \theta}\right] d \theta$

$$
S=\Lambda a \int_{0}^{\pi}\left(1-\sqrt{C_{0}^{\gamma}} \theta\right) d \theta
$$

$$
\begin{aligned}
& \sqrt{\operatorname{Cos}^{r} \theta}=\left\{\begin{array}{cc}
\operatorname{Cos} \theta & 0<\theta \leqslant \frac{\pi}{r} \\
-\cos \theta & \frac{\pi}{r}<\theta<\pi
\end{array}\right. \\
& S=x a\left[\int_{0}^{\pi / r}(1-\operatorname{Cos} \theta) d \theta+\int_{\frac{\pi}{r}}^{\pi}(1+\operatorname{Cos} \theta) d \theta\right] \\
& S=1 a^{r} r
\end{aligned}
$$

（リ，ジ）

5 | Ar mie

$x^{r}+z^{r}=a^{r}$ 生
(b)

$$
S=\Lambda \iint_{R} \frac{|\vec{\nabla} f|}{|\vec{\nabla} f \cdot \vec{p}|} \cdot d A
$$

$f=x^{r}+y^{r}-a^{r} \rightarrow \vec{\nabla} f=r x \vec{i}+r y \vec{j}$
$|\vec{\nabla} f|=\sqrt{r\left(x^{r}+y^{r}\right)}=r a \rightarrow\left(x^{r}+y^{r}=a^{r}\right)$
$\vec{\nabla} f \cdot \vec{p}=\vec{\nabla} f \cdot \vec{j}=r_{f} \rightarrow|\bar{\nabla} f \cdot \bar{j}|=|r y|$
$S=1 \iint_{R} \frac{r a}{r \sqrt{a^{r}-r}} d A$
$|\vec{\nabla} f \cdot \bar{j}|=r \sqrt{a^{r}-x^{r}}$
$\$=\wedge a \int_{0}^{a} \int_{0}^{\sqrt{a^{r}-x^{r}}} \frac{d z d x}{\sqrt{a^{r}-x^{r}}}=\left.\lambda a \int_{0}^{a} \frac{1}{\sqrt{a^{r}-x^{r}}}(z)\right|_{0} ^{\sqrt{a^{r}-x^{r}}} \cdot d x$

$$
S=\wedge a^{r}
$$

बT :

 $d \sigma=\frac{|\vec{\nabla} f|}{|\vec{\nabla} f \cdot \vec{p}|} d A \quad, \vec{p}=\vec{k}$ $f=r x-y+z-r \rightarrow \vec{\nabla} f=r \vec{i}-\vec{j}+\vec{k}$, $|\vec{\nabla} f \cdot \vec{k}|=1$

$z=r-r x+y$

$I=\iint_{G}(x y+z) d \sigma=\iint_{R}[x y+(r-r-x+y)] \frac{\sqrt{y}}{1} d A$
$I=\sqrt{y} \int_{0}^{1} \int_{0}^{x}(x y+r-r x+y) d y d x=\left.\sqrt{y} \int_{0}^{1}\left[\frac{x}{r} y^{r}+(r-r x) y+\frac{1}{r} y^{r}\right]\right|_{0} ^{x} d x$

$$
I=\frac{9 \sqrt{7}}{\pi}
$$

 $f=x^{r} \vec{r}^{r}-z^{r} \rightarrow \vec{\nabla} f=\vec{r} \vec{i}+r y \vec{j}-r z \vec{k}$ $|\bar{\nabla} f|=\sqrt{F^{\prime}\left(x^{2}-y^{r}+z^{r}\right)}=r \sqrt{x^{r}+y^{r}+\left(x^{r}+y^{r}\right)}$ $|\bar{\nabla} f|=r \sqrt{r} \cdot \sqrt{x^{r}+y^{r}}$
aff an

$$
d \sigma=\frac{|\bar{\nabla} f|}{|\sqrt{\vec{f}} \cdot \bar{x}|} d A=\frac{r \sqrt{r} \sqrt{x^{r}+y^{r}}}{r \sqrt{x^{r}+y^{r}}} d a=\sqrt{r} d A
$$

》少

$$
I=\iint_{R} x y z(\sqrt{r} d A)=\iint_{R} x y \sqrt{x^{\prime}+y^{r}}(\sqrt{r} d A)
$$

$$
I=\sqrt{r} \int_{0}^{r n} \int_{1}^{r} r^{r} \sin \theta \cos \theta \cdot r(r d r d \theta)=I=\left.0 \quad \sqrt{r} \int_{0}^{r \pi}\left(\frac{1}{r} \sin r \theta\right)\left(\frac{1}{\lambda} r^{r}\right)\right|_{1} ^{r} d \theta
$$

$$
\rightarrow I=0
$$

$x^{r}+2^{r}=1 \quad\left\{\begin{array}{l}x=r \cos \theta \\ z=r \sin \theta\end{array}\right.$

$I=\int_{0}^{r \pi} \int_{0}^{1} r^{r} \sqrt{12 r^{r}+1}+r d r d \theta$
 $\left.r^{r}=\frac{1^{r}}{r}\left(u^{r}\right)\right) \rightarrow r=i \quad u=1 \quad u=1^{\circ}$
$\rightarrow I=\frac{1}{14} \int_{0}^{r \pi} \int_{1}^{\sqrt{\alpha}}\left(u^{r}-1\right) u^{r} d u d \theta=\left.\frac{1}{14} \int_{0}^{1 \pi}\left(\frac{1}{s} u^{\gamma}-\frac{1}{x} u^{r}\right)\right|_{1} ^{\sqrt{\sqrt{x}}} d \theta \rightarrow I=\frac{r \Delta \sqrt{\partial}+1}{4} \pi$

$$
\begin{aligned}
& f=x^{r}+y+z^{r}-1 \quad \vec{p}=\vec{j} \\
& \vec{\nabla} f=r x \vec{i}+\vec{j}+r z \vec{k} \quad|\vec{\nabla} f \cdot \vec{p}|=1 \\
& |\vec{\nabla} f|=\sqrt{r\left(x^{r}+x^{r}\right)+1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { WA }
\end{aligned}
$$

$$
\begin{aligned}
& f=x^{r}+y^{r}+z^{r}-9 \\
& \vec{\nabla} f=r x \bar{i}+r y \bar{j}+r z \bar{k} \\
& \left.|\vec{\nabla} f|=\sqrt{F\left(x^{r}+y^{r}+z^{2}\right)}=\right\} \\
& |\vec{\nabla} f \cdot \vec{k}|=r|z| \quad r z \\
& d \sigma=\frac{\mid \vec{\nabla} f}{|\bar{\nabla} f \cdot \vec{p}|} d A=\frac{c}{r z} d n \\
& I=\iint_{G} z d \sigma=\iint_{R} z\left(\frac{\xi}{r z} d A\right)=r \iint_{R} d A
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{1^{2}} \quad I=\iint_{G}\left(x^{r}+y^{r}\right)^{2} d \sigma \quad(\tilde{\sim})
\end{aligned}
$$

$$
\begin{aligned}
& f=x^{r}+y^{r}-z^{r}=0 \rightarrow \vec{\nabla} f=r x \vec{\imath}+r y \vec{y}-r z \vec{k}: \hat{\theta} \\
& |\vec{\nabla} f|=r \sqrt{x^{r}+y^{r}+z^{r}}=r \sqrt{r z^{r}}=r \sqrt{r z} \\
& |\vec{\nabla} f \cdot \vec{k}|=r|z|=r z \quad z>0 \\
& d \sigma=\frac{|\bar{\eta} f|}{|\bar{\nabla} f \cdot \vec{k}|} d A=\frac{r \sqrt{r} z}{r z} d A=\sqrt{r} d A \\
& \begin{array}{l}
I=\iint_{G}\left(x^{r}+y^{r}\right) d \sigma=\iint_{R}\left(x^{r}+y^{r}\right) \sqrt{r} d A=\sqrt{r} \int_{0}^{r a} \int_{0}^{1} r^{r} \cdot r d r d \theta=\left.\frac{r \sqrt{r}}{r \cdot \sqrt{r}} \int_{0}^{\frac{r}{r}} \frac{1}{r} r^{r}\right|_{0} ^{1} d \theta=\frac{r \sqrt{r} z}{r z} d A=\sqrt{r} d A \\
I=\frac{\pi}{r}
\end{array}
\end{aligned}
$$

at wis

$$
\text { : } 6 \text {. } z=\sqrt{r}\left(\frac{x}{r}+1\right)
$$

 N, ,

$$
\left(x^{r}+y^{r}\right)^{r}=a^{r}\left(x^{r}-y^{r}\right)
$$

v. $\iint_{\sigma}\left(z+r x+\frac{\psi}{\mu} y\right) d \sigma \quad 6: \frac{1}{\pi}, \frac{x}{r}+\frac{y}{\mu}+\frac{z}{\tau}=1 \operatorname{ios} \ell$
$1 \quad \iint_{\sigma} y d \sigma$
$G: z=\sqrt{a^{r}-x^{2}-y^{r}}$ ०/ $\dot{F} \dot{c}^{\prime}$
$9 \iint_{\sigma} x^{r} y^{r} z d x d y$
$\sigma: x^{r}+y^{r}+z^{r}=a^{r} \circ / \sigma_{0}+\frac{6}{2}$

1. $\iint_{6} x z d x d y+x y d y d z+y z d z d x$

б: $\left\{\begin{array}{l}x+y+z=1=\text { vejitu } \\ x=0 \\ y=0 \\ z=0\end{array}\right.$

AV :

(1) 1π
(1) $r \sqrt{r} \pi p^{r}$
(-) $\frac{14}{r}(\sqrt{\wedge}-1)$
(d) $\frac{r \pi}{r}\left[\left(1+a^{r}\right)^{r / r}-1\right]$
(द) $r a^{r}(\pi+f-t \sqrt{r})$
(9) $\frac{k \pi a^{v}}{1 \cdot d}$
(10) $\frac{1}{1}$

